Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.

Identifieur interne : 001384 ( Main/Exploration ); précédent : 001383; suivant : 001385

Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.

Auteurs : Jonathan M. Conway [États-Unis] ; Bennett S. Mckinley [États-Unis] ; Nathaniel L. Seals [États-Unis] ; Diana Hernandez [États-Unis] ; Piyum A. Khatibi [États-Unis] ; Suresh Poudel [États-Unis] ; Richard J. Giannone [États-Unis] ; Robert L. Hettich [États-Unis] ; Amanda M. Williams-Rhaesa [États-Unis] ; Gina L. Lipscomb [États-Unis] ; Michael W W. Adams [États-Unis] ; Robert M. Kelly [États-Unis]

Source :

RBID : pubmed:28986379

Descripteurs français

English descriptors

Abstract

The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GH genes in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization.IMPORTANCE The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus Caldicellulosiruptor rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain Caldicellulosiruptor species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in Caldicellulosiruptor bescii, the nuanced, substrate-specific in vivo roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in C. bescii, working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.

DOI: 10.1128/AEM.01828-17
PubMed: 28986379
PubMed Central: PMC5717216


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.</title>
<author>
<name sortKey="Conway, Jonathan M" sort="Conway, Jonathan M" uniqKey="Conway J" first="Jonathan M" last="Conway">Jonathan M. Conway</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mckinley, Bennett S" sort="Mckinley, Bennett S" uniqKey="Mckinley B" first="Bennett S" last="Mckinley">Bennett S. Mckinley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seals, Nathaniel L" sort="Seals, Nathaniel L" uniqKey="Seals N" first="Nathaniel L" last="Seals">Nathaniel L. Seals</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hernandez, Diana" sort="Hernandez, Diana" uniqKey="Hernandez D" first="Diana" last="Hernandez">Diana Hernandez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khatibi, Piyum A" sort="Khatibi, Piyum A" uniqKey="Khatibi P" first="Piyum A" last="Khatibi">Piyum A. Khatibi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poudel, Suresh" sort="Poudel, Suresh" uniqKey="Poudel S" first="Suresh" last="Poudel">Suresh Poudel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Giannone, Richard J" sort="Giannone, Richard J" uniqKey="Giannone R" first="Richard J" last="Giannone">Richard J. Giannone</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams Rhaesa, Amanda M" sort="Williams Rhaesa, Amanda M" uniqKey="Williams Rhaesa A" first="Amanda M" last="Williams-Rhaesa">Amanda M. Williams-Rhaesa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lipscomb, Gina L" sort="Lipscomb, Gina L" uniqKey="Lipscomb G" first="Gina L" last="Lipscomb">Gina L. Lipscomb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Michael W W" sort="Adams, Michael W W" uniqKey="Adams M" first="Michael W W" last="Adams">Michael W W. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA rmkelly@ncsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28986379</idno>
<idno type="pmid">28986379</idno>
<idno type="doi">10.1128/AEM.01828-17</idno>
<idno type="pmc">PMC5717216</idno>
<idno type="wicri:Area/Main/Corpus">001134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001134</idno>
<idno type="wicri:Area/Main/Curation">001134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001134</idno>
<idno type="wicri:Area/Main/Exploration">001134</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.</title>
<author>
<name sortKey="Conway, Jonathan M" sort="Conway, Jonathan M" uniqKey="Conway J" first="Jonathan M" last="Conway">Jonathan M. Conway</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mckinley, Bennett S" sort="Mckinley, Bennett S" uniqKey="Mckinley B" first="Bennett S" last="Mckinley">Bennett S. Mckinley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seals, Nathaniel L" sort="Seals, Nathaniel L" uniqKey="Seals N" first="Nathaniel L" last="Seals">Nathaniel L. Seals</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hernandez, Diana" sort="Hernandez, Diana" uniqKey="Hernandez D" first="Diana" last="Hernandez">Diana Hernandez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khatibi, Piyum A" sort="Khatibi, Piyum A" uniqKey="Khatibi P" first="Piyum A" last="Khatibi">Piyum A. Khatibi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poudel, Suresh" sort="Poudel, Suresh" uniqKey="Poudel S" first="Suresh" last="Poudel">Suresh Poudel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Giannone, Richard J" sort="Giannone, Richard J" uniqKey="Giannone R" first="Richard J" last="Giannone">Richard J. Giannone</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams Rhaesa, Amanda M" sort="Williams Rhaesa, Amanda M" uniqKey="Williams Rhaesa A" first="Amanda M" last="Williams-Rhaesa">Amanda M. Williams-Rhaesa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lipscomb, Gina L" sort="Lipscomb, Gina L" uniqKey="Lipscomb G" first="Gina L" last="Lipscomb">Gina L. Lipscomb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Michael W W" sort="Adams, Michael W W" uniqKey="Adams M" first="Michael W W" last="Adams">Michael W W. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA rmkelly@ncsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (metabolism)</term>
<term>Cellulose (chemistry)</term>
<term>Firmicutes (genetics)</term>
<term>Firmicutes (metabolism)</term>
<term>Glucans (metabolism)</term>
<term>Glycoside Hydrolases (metabolism)</term>
<term>Panicum (chemistry)</term>
<term>Populus (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellulose (composition chimique)</term>
<term>Firmicutes (génétique)</term>
<term>Firmicutes (métabolisme)</term>
<term>Glucanes (métabolisme)</term>
<term>Glycosidases (métabolisme)</term>
<term>Panicum (composition chimique)</term>
<term>Populus (composition chimique)</term>
<term>Protéines bactériennes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Glucans</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Panicum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulose</term>
<term>Panicum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Firmicutes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Firmicutes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Firmicutes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Firmicutes</term>
<term>Glucanes</term>
<term>Glycosidases</term>
<term>Protéines bactériennes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic
<i>Caldicellulosiruptor</i>
species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective
<i>in vivo</i>
roles of the glycolytic enzymes, the six GH genes in the GDL of
<i>Caldicellulosiruptor bescii</i>
were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically
<i>in vivo</i>
and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by
<i>C. bescii</i>
and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization.
<b>IMPORTANCE</b>
The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus
<i>Caldicellulosiruptor</i>
rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain
<i>Caldicellulosiruptor</i>
species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in
<i>Caldicellulosiruptor bescii</i>
, the nuanced, substrate-specific
<i>in vivo</i>
roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in
<i>C. bescii</i>
, working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28986379</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2017</Year>
<Month>12</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01828-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01828-17</ELocationID>
<Abstract>
<AbstractText>The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic
<i>Caldicellulosiruptor</i>
species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective
<i>in vivo</i>
roles of the glycolytic enzymes, the six GH genes in the GDL of
<i>Caldicellulosiruptor bescii</i>
were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically
<i>in vivo</i>
and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by
<i>C. bescii</i>
and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization.
<b>IMPORTANCE</b>
The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus
<i>Caldicellulosiruptor</i>
rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain
<i>Caldicellulosiruptor</i>
species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in
<i>Caldicellulosiruptor bescii</i>
, the nuanced, substrate-specific
<i>in vivo</i>
roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in
<i>C. bescii</i>
, working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Conway</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McKinley</LastName>
<ForeName>Bennett S</ForeName>
<Initials>BS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seals</LastName>
<ForeName>Nathaniel L</ForeName>
<Initials>NL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hernandez</LastName>
<ForeName>Diana</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khatibi</LastName>
<ForeName>Piyum A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poudel</LastName>
<ForeName>Suresh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giannone</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hettich</LastName>
<ForeName>Robert L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams-Rhaesa</LastName>
<ForeName>Amanda M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lipscomb</LastName>
<ForeName>Gina L</ForeName>
<Initials>GL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Michael W W</ForeName>
<Initials>MWW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA rmkelly@ncsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OP1R32D61U</RegistryNumber>
<NameOfSubstance UI="C109691">microcrystalline cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000068536" MajorTopicYN="N">Firmicutes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="N">Panicum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Caldicellulosiruptor</Keyword>
<Keyword MajorTopicYN="Y">cellulase</Keyword>
<Keyword MajorTopicYN="Y">cellulose degradation</Keyword>
<Keyword MajorTopicYN="Y">extreme thermophile</Keyword>
<Keyword MajorTopicYN="Y">glycoside hydrolase</Keyword>
<Keyword MajorTopicYN="Y">lignocellulose</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28986379</ArticleId>
<ArticleId IdType="pii">AEM.01828-17</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01828-17</ArticleId>
<ArticleId IdType="pmc">PMC5717216</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Biofuels. 2016 May 20;9:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27213013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2015 May 14;3(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25977428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2013 Jan;115(1):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22921519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 16;8(12):e84172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24358340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Oct 09;7(1):142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25317205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4775-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20171088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 03;11(6):e0156802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27258548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Nov 29;13(12 ):964-966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27898063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 May;178(9):2498-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2013 Jan;40(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23149625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Jun;191(11):3760-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2016 Dec 13;199(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1997 Sep 16;57(1-3):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Apr 24;290(17):10645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2009 Aug;19(8):816-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Mar 25;291(13):6732-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26814128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17313685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19023044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):741-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Jul;108(7):1559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21337327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Oct;81(20):7159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26253670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jun 30;82(14 ):4421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jun 03;6(1):85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23731756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 03;8(5):e62881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Apr;77(7):2232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(24):8084-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20971878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2011;498:349-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21601685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2011-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2000 May;40(5):333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Feb;78(3):768-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2015 Sep;71(Pt 9):1946-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26327384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Mar;19(3):242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11231557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Oct 10;7(1):147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 May 29;6(1):82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23714229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Feb;144 ( Pt 2):457-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9493383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Sep 2;10(9):3871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21761931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Jul;185(13):3888-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12813083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Apr 1;161(1):209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9561750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jan 23;16:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25613058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Oct;78(19):7048-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22843537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Jun;81(11):3823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25819971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Nov;196(21):3784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Dec 9;36(49):15134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(14):4762-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 23;10(3):e0119508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25799047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 May;38(3):393-448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24118059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):16423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Jul;89(1):14-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Dec 20;342(6165):1513-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24357319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jun;77(12):4042-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Nov;4(11):923-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(7):2230-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2017 Jun 30;83(14 ):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28476773</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Géorgie (États-Unis)</li>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Conway, Jonathan M" sort="Conway, Jonathan M" uniqKey="Conway J" first="Jonathan M" last="Conway">Jonathan M. Conway</name>
</region>
<name sortKey="Adams, Michael W W" sort="Adams, Michael W W" uniqKey="Adams M" first="Michael W W" last="Adams">Michael W W. Adams</name>
<name sortKey="Giannone, Richard J" sort="Giannone, Richard J" uniqKey="Giannone R" first="Richard J" last="Giannone">Richard J. Giannone</name>
<name sortKey="Hernandez, Diana" sort="Hernandez, Diana" uniqKey="Hernandez D" first="Diana" last="Hernandez">Diana Hernandez</name>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<name sortKey="Khatibi, Piyum A" sort="Khatibi, Piyum A" uniqKey="Khatibi P" first="Piyum A" last="Khatibi">Piyum A. Khatibi</name>
<name sortKey="Lipscomb, Gina L" sort="Lipscomb, Gina L" uniqKey="Lipscomb G" first="Gina L" last="Lipscomb">Gina L. Lipscomb</name>
<name sortKey="Mckinley, Bennett S" sort="Mckinley, Bennett S" uniqKey="Mckinley B" first="Bennett S" last="Mckinley">Bennett S. Mckinley</name>
<name sortKey="Poudel, Suresh" sort="Poudel, Suresh" uniqKey="Poudel S" first="Suresh" last="Poudel">Suresh Poudel</name>
<name sortKey="Seals, Nathaniel L" sort="Seals, Nathaniel L" uniqKey="Seals N" first="Nathaniel L" last="Seals">Nathaniel L. Seals</name>
<name sortKey="Williams Rhaesa, Amanda M" sort="Williams Rhaesa, Amanda M" uniqKey="Williams Rhaesa A" first="Amanda M" last="Williams-Rhaesa">Amanda M. Williams-Rhaesa</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001384 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001384 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28986379
   |texte=   Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28986379" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020